

 Navigation

 	
 index

 	
 next |

 	pyFFTW 0.10.3 documentation

Welcome to pyFFTW’s documentation!

Introduction

pyFFTW is a pythonic wrapper around FFTW [http://www.fftw.org/], the
speedy FFT library. The ultimate aim is to present a unified interface for all
the possible transforms that FFTW can perform.

Both the complex DFT and the real DFT are supported, as well as on arbitrary
axes of abitrary shaped and strided arrays, which makes it almost
feature equivalent to standard and real FFT functions of numpy.fft [http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft]
(indeed, it supports the clongdouble dtype which
numpy.fft does not).

Operating FFTW in multithreaded mode is supported.

The core interface is provided by a unified class, pyfftw.FFTW.
This core interface can be accessed directly, or through a series of helper
functions, provided by the pyfftw.builders module. These helper
functions provide an interface similar to numpy.fft [http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft] for ease of use.

In addition to using pyfftw.FFTW, a convenient series of functions
are included through pyfftw.interfaces that make using pyfftw
almost equivalent to numpy.fft [http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft] or scipy.fftpack [http://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack].

The source can be found in github [https://github.com/hgomersall/pyFFTW] and
its page in the python package index is here [http://pypi.python.org/pypi/pyFFTW].

A comprehensive unittest suite is included with the source on the repository.
If any aspect of this library is not covered by the test suite, that is a bug
(please report it!).

Contents

	Overview and A Short Tutorial
	Quick and easy: the pyfftw.interfaces module

	The workhorse pyfftw.FFTW class

	The pyfftw.builders functions

	API Reference
	pyfftw - The core

	pyfftw.builders - Get FFTW objects using a numpy.fft like interface

	pyfftw.builders._utils - Helper functions for pyfftw.builders

	pyfftw.interfaces - Drop in replacements for other FFT implementations

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Henry Gomersall.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyFFTW 0.10.3 documentation

Overview and A Short Tutorial

Before we begin, we assume that you are already familiar with the
discrete Fourier transform [http://en.wikipedia.org/wiki/Discrete_Fourier_transform],
and why you want a faster library to perform your FFTs for you.

FFTW [http://www.fftw.org/] is a very fast FFT C library. The way it
is designed to work is by planning in advance the fastest way to
perform a particular transform. It does this by trying lots of
different techniques and measuring the fastest way, so called
planning.

One consequence of this is that the user needs to specify in advance
exactly what transform is needed, including things like the data type,
the array shapes and strides and the precision. This is quite
different to how one uses, for example, the numpy.fft [http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft] module.

The purpose of this library is to provide a simple and pythonic way
to interact with FFTW, benefiting from the substantial speed-ups it
offers. In addition to the method of using FFTW as described above,
a convenient series of functions are included through pyfftw.interfaces
that make using pyfftw almost equivalent to numpy.fft [http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft].

This tutorial is split into three parts. A quick introduction to the
pyfftw.interfaces module is given, the
most simple and direct way to use pyfftw. Secondly an
overview is given of pyfftw.FFTW, the core
of the library. Finally, the pyfftw.builders helper functions are
introduced, which ease the creation of
pyfftw.FFTW objects.

Quick and easy: the pyfftw.interfaces module

The easiest way to begin using pyfftw is through the
pyfftw.interfaces module. This module implements two APIs:
pyfftw.interfaces.numpy_fft and
pyfftw.interfaces.scipy_fftpack which are (apart from a small
caveat [1]) drop in replacements for numpy.fft [http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft] and
scipy.fftpack [http://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack] respectively.

>>> import pyfftw
>>> import numpy
>>> a = pyfftw.empty_aligned(128, dtype='complex128', n=16)
>>> a[:] = numpy.random.randn(128) + 1j*numpy.random.randn(128)
>>> b = pyfftw.interfaces.numpy_fft.fft(a)
>>> c = numpy.fft.fft(a)
>>> numpy.allclose(b, c)
True

We initially create and fill a complex array, a, of length 128.
pyfftw.empty_aligned() is a helper function that works like
numpy.empty() [http://docs.scipy.org/doc/numpy/reference/generated/numpy.empty.html#numpy.empty] but returns the array aligned to a particular number of
bytes in memory, in this case 16. If the alignment is not specified then the
library inspects the CPU for an appropriate alignment value. Having byte aligned
arrays allows FFTW to performed vector operations, potentially speeding up the
FFT (a similar pyfftw.byte_align() exists to align a pre-existing array as
necessary).

Calling pyfftw.interfaces.numpy_fft.fft() on a gives the same
output (to numerical precision) as calling numpy.fft.fft() [http://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fft.html#numpy.fft.fft] on a.

If you wanted to modify existing code that uses numpy.fft [http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft] to use
pyfftw.interfaces, this is done simply by replacing all instances of
numpy.fft [http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft] with pyfftw.interfaces.numpy_fft (similarly for
scipy.fftpack [http://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack] and pyfftw.interfaces.scipy_fftpack), and then,
optionally, enabling the cache (see below).

The first call for a given transform size and shape and dtype and so on
may be slow, this is down to FFTW needing to plan the transform for the first
time. Once this has been done, subsequent equivalent transforms during the
same session are much faster. It’s possible to export and save the internal
knowledge (the wisdom) about how the transform is done. This is described
below.

Even after the first transform of a given specification has been performed,
subsequent transforms are never as fast as using pyfftw.FFTW objects
directly, and in many cases are substantially slower. This is because of the
internal overhead of creating a new pyfftw.FFTW object on every call.
For this reason, a cache is provided, which is recommended to be used whenever
pyfftw.interfaces is used. Turn the cache on using
pyfftw.interfaces.cache.enable(). This function turns the cache on
globally. Note that using the cache invokes the threading module.

The cache temporarily stores a copy of any interim pyfftw.FFTW
objects that are created. If they are not used for some period of time,
which can be set with pyfftw.interfaces.cache.set_keepalive_time(),
then they are removed from the cache (liberating any associated memory).
The default keepalive time is 0.1 seconds.

Monkey patching 3rd party libraries

Since pyfftw.interfaces.numpy_fft and
pyfftw.interfaces.scipy_fftpack are drop-in replacements for their
numpy.fft [http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft] and scipy.fftpack [http://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack] libraries respectively, it is
possible use them as replacements at run-time through monkey patching.

The following code demonstrates scipy.signal.fftconvolve() [http://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.fftconvolve.html#scipy.signal.fftconvolve] being monkey
patched in order to speed it up.

import pyfftw
import scipy.signal
import numpy
from timeit import Timer

a = pyfftw.empty_aligned((128, 64), dtype='complex128')
b = pyfftw.empty_aligned((128, 64), dtype='complex128')

a[:] = numpy.random.randn(128, 64) + 1j*numpy.random.randn(128, 64)
b[:] = numpy.random.randn(128, 64) + 1j*numpy.random.randn(128, 64)

t = Timer(lambda: scipy.signal.fftconvolve(a, b))

print('Time with scipy.fftpack: %1.3f seconds' % t.timeit(number=100))

Monkey patch fftpack with pyfftw.interfaces.scipy_fftpack
scipy.fftpack = pyfftw.interfaces.scipy_fftpack
scipy.signal.fftconvolve(a, b) # We cheat a bit by doing the planning first

Turn on the cache for optimum performance
pyfftw.interfaces.cache.enable()

print('Time with monkey patched scipy_fftpack: %1.3f seconds' %
 t.timeit(number=100))

which outputs something like:

Time with scipy.fftpack: 0.598 seconds
Time with monkey patched scipy_fftpack: 0.251 seconds

Note that prior to Scipy 0.16, it was necessary to patch the individual
functions in scipy.signal.signaltools. For example:

scipy.signal.signaltools.ifftn = pyfftw.interfaces.scipy_fftpack.ifftn

The workhorse pyfftw.FFTW class

The core of this library is provided through the pyfftw.FFTW
class. FFTW is fully encapsulated within this class.

The following gives an overview of the pyfftw.FFTW class, but
the easiest way to of dealing with it is through the
pyfftw.builders helper functions, also
discussed in this tutorial.

For users that already have some experience of FFTW, there is no
interface distinction between any of the supported data types, shapes
or transforms, and operating on arbitrarily strided arrays (which are
common when using numpy [http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy]) is fully supported with no copies
necessary.

In its simplest form, a pyfftw.FFTW object is created with
a pair of complementary numpy [http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy] arrays: an input array and an
output array. They are complementary insomuch as the data types and the
array sizes together define exactly what transform should be performed.
We refer to a valid transform as a scheme.

Internally, three precisions of FFT are supported. These correspond
to single precision floating point, double precision floating point
and long double precision floating
point, which correspond to numpy [http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy]‘s float32, float64
and longdouble dtypes respectively (and the corresponding
complex types). The precision is decided by the relevant scheme,
which is specified by the dtype of the input array.

Various schemes are supported by pyfftw.FFTW. The scheme
that is used depends on the data types of the input array and output
arrays, the shape of the arrays and the direction flag. For a full
discussion of the schemes available, see the API documentation for
pyfftw.FFTW.

One-Dimensional Transforms

We will first consider creating a simple one-dimensional transform of
a one-dimensional complex array:

import pyfftw

a = pyfftw.empty_aligned(128, dtype='complex128')
b = pyfftw.empty_aligned(128, dtype='complex128')

fft_object = pyfftw.FFTW(a, b)

In this case, we create 2 complex arrays, a and b each of
length 128. As before, we use pyfftw.empty_aligned() to
make sure the array is aligned.

Given these 2 arrays, the only transform that makes sense is a
1D complex DFT. The direction in this case is the default, which is
forward, and so that is the transform that is planned. The
returned fft_object represents such a transform.

In general, the creation of the pyfftw.FFTW object clears the
contents of the arrays, so the arrays should be filled or updated
after creation.

Similarly, to plan the inverse:

c = pyfftw.empty_aligned(128, dtype='complex128')
ifft_object = pyfftw.FFTW(b, c, direction='FFTW_BACKWARD')

In this case, the direction argument is given as 'FFTW_BACKWARD'
(to override the default of 'FFTW_FORWARD').

The actual FFT is performed by calling the returned objects:

import numpy

Generate some data
ar, ai = numpy.random.randn(2, 128)
a[:] = ar + 1j*ai

fft_a = fft_object()

Note that calling the object like this performs the FFT and returns
the result in an array. This is the same array as b:

>>> fft_a is b
True

This is particularly useful when using pyfftw.builders to
generate the pyfftw.FFTW objects.

Calling the FFT object followed by the inverse FFT object yields
an output that is numerically the same as the original a
(within numerical accuracy).

>>> fft_a = fft_object()
>>> ifft_b = ifft_object()
>>> ifft_b is c
True
>>> numpy.allclose(a, c)
True
>>> a is c
False

In this case, the normalisation of the DFT is performed automatically
by the inverse FFTW object (ifft_object). This can be disabled
by setting the normalise_idft=False argument.

It is possible to change the data on which a pyfftw.FFTW
operates. The pyfftw.FFTW.__call__() accepts both an
input_array and an output_array argument to update the
arrays. The arrays should be compatible with the arrays with which
the pyfftw.FFTW object was originally created. Please read the
API docs on pyfftw.FFTW.__call__() to fully understand the
requirements for updating the array.

>>> d = pyfftw.empty_aligned(4, dtype='complex128')
>>> e = pyfftw.empty_aligned(4, dtype='complex128')
>>> f = pyfftw.empty_aligned(4, dtype='complex128')
>>> fft_object = pyfftw.FFTW(d, e)
>>> fft_object.input_array is d # get the input array from the object
True
>>> f[:] = [1, 2, 3, 4] # Add some data to f
>>> fft_object(f)
array([10.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])
>>> fft_object.input_array is d # No longer true!
False
>>> fft_object.input_array is f # It has been updated with f :)
True

If the new input array is of the wrong dtype or wrongly strided,
pyfftw.FFTW.__call__() method will copy the new array into the
internal array, if necessary changing it’s dtype in the process.

It should be made clear that the pyfftw.FFTW.__call__() method
is simply a helper routine around the other methods of the object.
Though it is expected that most of the time
pyfftw.FFTW.__call__() will be sufficient, all the FFTW
functionality can be accessed through other methods at a slightly
lower level.

Multi-Dimensional Transforms

Arrays of more than one dimension are easily supported as well.
In this case, the axes argument specifies over which axes the
transform is to be taken.

import pyfftw

a = pyfftw.empty_aligned((128, 64), dtype='complex128')
b = pyfftw.empty_aligned((128, 64), dtype='complex128')

Plan an fft over the last axis
fft_object_a = pyfftw.FFTW(a, b)

Over the first axis
fft_object_b = pyfftw.FFTW(a, b, axes=(0,))

Over the both axes
fft_object_c = pyfftw.FFTW(a, b, axes=(0,1))

For further information on all the supported transforms, including
real transforms, as well as full documentaion on all the
instantiation arguments, see the pyfftw.FFTW documentation.

Wisdom

When creating a pyfftw.FFTW object, it is possible to instruct
FFTW how much effort it should put into finding the fastest possible
method for computing the DFT. This is done by specifying a suitable
planner flag in flags argument to pyfftw.FFTW. Some
of the planner flags can take a very long time to complete which can
be problematic.

When the a particular transform has been created, distinguished by
things like the data type, the shape, the stridings and the flags,
FFTW keeps a record of the fastest way to compute such a transform in
future. This is referred to as
wisdom [http://www.fftw.org/fftw3_doc/Wisdom.html]. When
the program is completed, the wisdom that has been accumulated is
forgotten.

It is possible to output the accumulated wisdom using the
wisdom output routines.
pyfftw.export_wisdom() exports and returns the wisdom as a tuple
of strings that can be easily written to file. To load the wisdom back
in, use the pyfftw.import_wisdom() function which takes as its
argument that same tuple of strings that was returned from
pyfftw.export_wisdom().

If for some reason you wish to forget the accumulated wisdom, call
pyfftw.forget_wisdom().

The pyfftw.builders functions

If you absolutely need the flexibility of dealing with
pyfftw.FFTW directly, an easier option than constructing valid
arrays and so on is to use the convenient pyfftw.builders package.
These functions take care of much of the difficulty in specifying the
exact size and dtype requirements to produce a valid scheme.

The pyfftw.builders functions are a series of helper functions
that provide an interface very much like that provided by
numpy.fft [http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft], only instead of returning the result of the
transform, a pyfftw.FFTW object (or in some cases a wrapper
around pyfftw.FFTW) is returned.

import pyfftw

a = pyfftw.empty_aligned((128, 64), dtype='complex128')

Generate some data
ar, ai = numpy.random.randn(2, 128, 64)
a[:] = ar + 1j*ai

fft_object = pyfftw.builders.fft(a)

b = fft_object()

fft_object is an instance of pyfftw.FFTW, b is
the result of the DFT.

Note that in this example, unlike creating a pyfftw.FFTW
object using the direct interface, we can fill the array in advance.
This is because by default all the functions in pyfftw.builders
keep a copy of the input array during creation (though this can
be disabled).

The pyfftw.builders functions construct an output array of
the correct size and type. In the case of the regular DFTs, this
always creates an output array of the same size as the input array.
In the case of the real transform, the output array is the right
shape to satisfy the scheme requirements.

The precision of the transform is determined by the dtype of the
input array. If the input array is a floating point array, then
the precision of the floating point is used. If the input array
is not a floating point array then a double precision transform is used.
Any calls made to the resultant object with an array of the same
size will then be copied into the internal array of the object,
changing the dtype in the process.

Like numpy.fft [http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft], it is possible to specify a length (in the
one-dimensional case) or a shape (in the multi-dimensional case) that
may be different to the array that is passed in. In such a case,
a wrapper object of type
pyfftw.builders._utils._FFTWWrapper is returned. From an
interface perspective, this is identical to pyfftw.FFTW. The
difference is in the way calls to the object are handled. With
pyfftw.builders._utils._FFTWWrapper objects, an array that
is passed as an argument when calling the object is copied into the
internal array. This is done by a suitable slicing of the new
passed-in array and the internal array and is done precisely because
the shape of the transform is different to the shape of the input
array.

a = pyfftw.empty_aligned((128, 64), dtype='complex128')

fft_wrapper_object = pyfftw.builders.fftn(a, s=(32, 256))

b = fft_wrapper_object()

Inspecting these objects gives us their shapes:

>>> b.shape
(32, 256)
>>> fft_wrapper_object.input_array.shape
(32, 256)
>>> a.shape
(128, 64)

It is only possible to call fft_wrapper_object with an array
that is the same shape as a. In this case, the first axis of a
is sliced to include only the first 32 elements, and the second axis
of the internal array is sliced to include only the last 64 elements.
This way, shapes are made consistent for copying.

Understanding numpy.fft [http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft], these functions are largely
self-explanatory. We point the reader to the API docs
for more information.

Footnotes

	[1]	pyfftw.interfaces deals with repeated values in the
axes argument differently to numpy.fft [http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft] (and probably to
scipy.fftpack [http://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack] to, but that’s not documented clearly).
Specifically, numpy.fft [http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft] takes the transform along a given axis
as many times as it appears in the axes argument.
pyfftw.interfaces takes the transform only once along each
axis that appears, regardless of how many times it appears. This is
deemed to be such a fringe corner case that it is ignored.

 Copyright 2016, Henry Gomersall.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyFFTW 0.10.3 documentation

API Reference

	pyfftw - The core
	FFTW Class

	Wisdom Functions

	Utility Functions

	pyfftw.builders - Get FFTW objects using a numpy.fft like interface

	pyfftw.builders._utils - Helper functions for pyfftw.builders

	pyfftw.interfaces - Drop in replacements for other FFT implementations
	Caching

 Copyright 2016, Henry Gomersall.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyFFTW 0.10.3 documentation

 	API Reference

pyfftw - The core

FFTW Class

Wisdom Functions

Functions for dealing with FFTW’s ability to export and restore plans,
referred to as wisdom. For further information, refer to the FFTW
wisdom documentation [http://www.fftw.org/fftw3_doc/Words-of-Wisdom_002dSaving-Plans.html#Words-of-Wisdom_002dSaving-Plans].

Utility Functions

	
pyfftw.simd_alignment

	An integer giving the optimum SIMD alignment in bytes, found by
inspecting the CPU (e.g. if AVX is supported, its value will be 32).

This can be used as n in the arguments for byte_align(),
empty_aligned(), zeros_aligned(), and ones_aligned() to
create optimally aligned arrays for the running platform.

 Copyright 2016, Henry Gomersall.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyFFTW 0.10.3 documentation

 	API Reference

pyfftw.builders - Get FFTW objects using a numpy.fft like interface

 Copyright 2016, Henry Gomersall.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyFFTW 0.10.3 documentation

 	API Reference

pyfftw.builders._utils - Helper functions for pyfftw.builders

 Copyright 2016, Henry Gomersall.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyFFTW 0.10.3 documentation

 	API Reference

pyfftw.interfaces - Drop in replacements for other FFT implementations

Caching

 Copyright 2016, Henry Gomersall.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pyFFTW 0.10.3 documentation

 	API Reference

 	pyfftw.interfaces - Drop in replacements for other FFT implementations

numpy.fft [http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft] interface

 Copyright 2016, Henry Gomersall.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	pyFFTW 0.10.3 documentation

 	API Reference

 	pyfftw.interfaces - Drop in replacements for other FFT implementations

scipy.fftpack [http://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack] interface

 Copyright 2016, Henry Gomersall.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	pyFFTW 0.10.3 documentation

Index

 P

P

 	

 	pyfftw.simd_alignment (built-in variable)

 Copyright 2016, Henry Gomersall.
 Created using Sphinx 1.3.5.

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		pyFFTW 0.10.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Henry Gomersall.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/down.png

