
pyFFTW Documentation
Release 0.10.2

Henry Gomersall

June 05, 2016

Contents

1 Introduction 1

2 Contents 3
2.1 Overview and A Short Tutorial . 3
2.2 API Reference . 9

3 Indices and tables 11

i

ii

CHAPTER 1

Introduction

pyFFTW is a pythonic wrapper around FFTW, the speedy FFT library. The ultimate aim is to present a unified
interface for all the possible transforms that FFTW can perform.

Both the complex DFT and the real DFT are supported, as well as on arbitrary axes of abitrary shaped and strided ar-
rays, which makes it almost feature equivalent to standard and real FFT functions of numpy.fft (indeed, it supports
the clongdouble dtype which numpy.fft does not).

Operating FFTW in multithreaded mode is supported.

The core interface is provided by a unified class, pyfftw.FFTW. This core interface can be accessed directly, or
through a series of helper functions, provided by the pyfftw.builders module. These helper functions provide
an interface similar to numpy.fft for ease of use.

In addition to using pyfftw.FFTW, a convenient series of functions are included through pyfftw.interfaces
that make using pyfftw almost equivalent to numpy.fft or scipy.fftpack.

The source can be found in github and its page in the python package index is here.

A comprehensive unittest suite is included with the source on the repository. If any aspect of this library is not covered
by the test suite, that is a bug (please report it!).

1

http://www.fftw.org/
http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
http://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://github.com/hgomersall/pyFFTW
http://pypi.python.org/pypi/pyFFTW

pyFFTW Documentation, Release 0.10.2

2 Chapter 1. Introduction

CHAPTER 2

Contents

2.1 Overview and A Short Tutorial

Before we begin, we assume that you are already familiar with the discrete Fourier transform, and why you want a
faster library to perform your FFTs for you.

FFTW is a very fast FFT C library. The way it is designed to work is by planning in advance the fastest way to
perform a particular transform. It does this by trying lots of different techniques and measuring the fastest way, so
called planning.

One consequence of this is that the user needs to specify in advance exactly what transform is needed, including things
like the data type, the array shapes and strides and the precision. This is quite different to how one uses, for example,
the numpy.fft module.

The purpose of this library is to provide a simple and pythonic way to interact with FFTW, benefiting from the
substantial speed-ups it offers. In addition to the method of using FFTW as described above, a convenient series of
functions are included through pyfftw.interfaces that make using pyfftw almost equivalent to numpy.fft.

This tutorial is split into three parts. A quick introduction to the pyfftw.interfaces module is given, the most
simple and direct way to use pyfftw. Secondly an overview is given of pyfftw.FFTW, the core of the library.
Finally, the pyfftw.builders helper functions are introduced, which ease the creation of pyfftw.FFTW objects.

2.1.1 Quick and easy: the pyfftw.interfaces module

The easiest way to begin using pyfftw is through the pyfftw.interfacesmodule. This module implements two
APIs: pyfftw.interfaces.numpy_fft and pyfftw.interfaces.scipy_fftpack which are (apart
from a small caveat 1) drop in replacements for numpy.fft and scipy.fftpack respectively.

>>> import pyfftw
>>> import numpy
>>> a = pyfftw.empty_aligned(128, dtype='complex128', n=16)
>>> a[:] = numpy.random.randn(128) + 1j*numpy.random.randn(128)
>>> b = pyfftw.interfaces.numpy_fft.fft(a)
>>> c = numpy.fft.fft(a)
>>> numpy.allclose(b, c)
True

1 pyfftw.interfaces deals with repeated values in the axes argument differently to numpy.fft (and probably to scipy.fftpack
to, but that’s not documented clearly). Specifically, numpy.fft takes the transform along a given axis as many times as it appears in the axes
argument. pyfftw.interfaces takes the transform only once along each axis that appears, regardless of how many times it appears. This is
deemed to be such a fringe corner case that it is ignored.

3

http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://www.fftw.org/
http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
http://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
http://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft

pyFFTW Documentation, Release 0.10.2

We initially create and fill a complex array, a, of length 128. pyfftw.empty_aligned() is a helper function
that works like numpy.empty() but returns the array aligned to a particular number of bytes in memory, in this
case 16. If the alignment is not specified then the library inspects the CPU for an appropriate alignment value.
Having byte aligned arrays allows FFTW to performed vector operations, potentially speeding up the FFT (a similar
pyfftw.byte_align() exists to align a pre-existing array as necessary).

Calling pyfftw.interfaces.numpy_fft.fft() on a gives the same output (to numerical precision) as call-
ing numpy.fft.fft() on a.

If you wanted to modify existing code that uses numpy.fft to use pyfftw.interfaces, this is done
simply by replacing all instances of numpy.fft with pyfftw.interfaces.numpy_fft (similarly for
scipy.fftpack and pyfftw.interfaces.scipy_fftpack), and then, optionally, enabling the cache (see
below).

The first call for a given transform size and shape and dtype and so on may be slow, this is down to FFTW needing
to plan the transform for the first time. Once this has been done, subsequent equivalent transforms during the same
session are much faster. It’s possible to export and save the internal knowledge (the wisdom) about how the transform
is done. This is described below.

Even after the first transform of a given specification has been performed, subsequent transforms are never as
fast as using pyfftw.FFTW objects directly, and in many cases are substantially slower. This is because of
the internal overhead of creating a new pyfftw.FFTW object on every call. For this reason, a cache is pro-
vided, which is recommended to be used whenever pyfftw.interfaces is used. Turn the cache on using
pyfftw.interfaces.cache.enable(). This function turns the cache on globally. Note that using the cache
invokes the threading module.

The cache temporarily stores a copy of any interim pyfftw.FFTW objects that are created. If they are not used for
some period of time, which can be set with pyfftw.interfaces.cache.set_keepalive_time(), then
they are removed from the cache (liberating any associated memory). The default keepalive time is 0.1 seconds.

Monkey patching 3rd party libraries

Since pyfftw.interfaces.numpy_fft and pyfftw.interfaces.scipy_fftpack are drop-in re-
placements for their numpy.fft and scipy.fftpack libraries respectively, it is possible use them as replace-
ments at run-time through monkey patching.

The following code demonstrates scipy.signal.fftconvolve() being monkey patched in order to speed it
up.

import pyfftw
import scipy.signal
import numpy
from timeit import Timer

a = pyfftw.empty_aligned((128, 64), dtype='complex128')
b = pyfftw.empty_aligned((128, 64), dtype='complex128')

a[:] = numpy.random.randn(128, 64) + 1j*numpy.random.randn(128, 64)
b[:] = numpy.random.randn(128, 64) + 1j*numpy.random.randn(128, 64)

t = Timer(lambda: scipy.signal.fftconvolve(a, b))

print('Time with scipy.fftpack: %1.3f seconds' % t.timeit(number=100))

Monkey patch fftpack with pyfftw.interfaces.scipy_fftpack
scipy.fftpack = pyfftw.interfaces.scipy_fftpack
scipy.signal.fftconvolve(a, b) # We cheat a bit by doing the planning first

4 Chapter 2. Contents

http://docs.scipy.org/doc/numpy/reference/generated/numpy.empty.html#numpy.empty
http://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fft.html#numpy.fft.fft
http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
http://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
http://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
http://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.fftconvolve.html#scipy.signal.fftconvolve

pyFFTW Documentation, Release 0.10.2

Turn on the cache for optimum performance
pyfftw.interfaces.cache.enable()

print('Time with monkey patched scipy_fftpack: %1.3f seconds' %
t.timeit(number=100))

which outputs something like:

Time with scipy.fftpack: 0.598 seconds
Time with monkey patched scipy_fftpack: 0.251 seconds

Note that prior to Scipy 0.16, it was necessary to patch the individual functions in scipy.signal.signaltools.
For example:

scipy.signal.signaltools.ifftn = pyfftw.interfaces.scipy_fftpack.ifftn

2.1.2 The workhorse pyfftw.FFTW class

The core of this library is provided through the pyfftw.FFTW class. FFTW is fully encapsulated within this class.

The following gives an overview of the pyfftw.FFTW class, but the easiest way to of dealing with it is through the
pyfftw.builders helper functions, also discussed in this tutorial.

For users that already have some experience of FFTW, there is no interface distinction between any of the supported
data types, shapes or transforms, and operating on arbitrarily strided arrays (which are common when using numpy)
is fully supported with no copies necessary.

In its simplest form, a pyfftw.FFTW object is created with a pair of complementary numpy arrays: an input array
and an output array. They are complementary insomuch as the data types and the array sizes together define exactly
what transform should be performed. We refer to a valid transform as a scheme.

Internally, three precisions of FFT are supported. These correspond to single precision floating point, double precision
floating point and long double precision floating point, which correspond to numpy‘s float32, float64 and
longdouble dtypes respectively (and the corresponding complex types). The precision is decided by the relevant
scheme, which is specified by the dtype of the input array.

Various schemes are supported by pyfftw.FFTW. The scheme that is used depends on the data types of the input
array and output arrays, the shape of the arrays and the direction flag. For a full discussion of the schemes available,
see the API documentation for pyfftw.FFTW.

One-Dimensional Transforms

We will first consider creating a simple one-dimensional transform of a one-dimensional complex array:

import pyfftw

a = pyfftw.empty_aligned(128, dtype='complex128')
b = pyfftw.empty_aligned(128, dtype='complex128')

fft_object = pyfftw.FFTW(a, b)

In this case, we create 2 complex arrays, a and b each of length 128. As before, we use
pyfftw.empty_aligned() to make sure the array is aligned.

Given these 2 arrays, the only transform that makes sense is a 1D complex DFT. The direction in this case is the
default, which is forward, and so that is the transform that is planned. The returned fft_object represents such a
transform.

2.1. Overview and A Short Tutorial 5

http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

pyFFTW Documentation, Release 0.10.2

In general, the creation of the pyfftw.FFTW object clears the contents of the arrays, so the arrays should be filled or
updated after creation.

Similarly, to plan the inverse:

c = pyfftw.empty_aligned(128, dtype='complex128')
ifft_object = pyfftw.FFTW(b, c, direction='FFTW_BACKWARD')

In this case, the direction argument is given as ’FFTW_BACKWARD’ (to override the default of ’FFTW_FORWARD’).

The actual FFT is performed by calling the returned objects:

import numpy

Generate some data
ar, ai = numpy.random.randn(2, 128)
a[:] = ar + 1j*ai

fft_a = fft_object()

Note that calling the object like this performs the FFT and returns the result in an array. This is the same array as b:

>>> fft_a is b
True

This is particularly useful when using pyfftw.builders to generate the pyfftw.FFTW objects.

Calling the FFT object followed by the inverse FFT object yields an output that is numerically the same as the original
a (within numerical accuracy).

>>> fft_a = fft_object()
>>> ifft_b = ifft_object()
>>> ifft_b is c
True
>>> numpy.allclose(a, c)
True
>>> a is c
False

In this case, the normalisation of the DFT is performed automatically by the inverse FFTW object (ifft_object).
This can be disabled by setting the normalise_idft=False argument.

It is possible to change the data on which a pyfftw.FFTW operates. The pyfftw.FFTW.__call__() accepts
both an input_array and an output_array argument to update the arrays. The arrays should be compat-
ible with the arrays with which the pyfftw.FFTW object was originally created. Please read the API docs on
pyfftw.FFTW.__call__() to fully understand the requirements for updating the array.

>>> d = pyfftw.empty_aligned(4, dtype='complex128')
>>> e = pyfftw.empty_aligned(4, dtype='complex128')
>>> f = pyfftw.empty_aligned(4, dtype='complex128')
>>> fft_object = pyfftw.FFTW(d, e)
>>> fft_object.input_array is d # get the input array from the object
True
>>> f[:] = [1, 2, 3, 4] # Add some data to f
>>> fft_object(f)
array([10.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])
>>> fft_object.input_array is d # No longer true!
False
>>> fft_object.input_array is f # It has been updated with f :)
True

6 Chapter 2. Contents

pyFFTW Documentation, Release 0.10.2

If the new input array is of the wrong dtype or wrongly strided, pyfftw.FFTW.__call__() method will copy
the new array into the internal array, if necessary changing it’s dtype in the process.

It should be made clear that the pyfftw.FFTW.__call__() method is simply a helper routine around the other
methods of the object. Though it is expected that most of the time pyfftw.FFTW.__call__() will be sufficient,
all the FFTW functionality can be accessed through other methods at a slightly lower level.

Multi-Dimensional Transforms

Arrays of more than one dimension are easily supported as well. In this case, the axes argument specifies over which
axes the transform is to be taken.

import pyfftw

a = pyfftw.empty_aligned((128, 64), dtype='complex128')
b = pyfftw.empty_aligned((128, 64), dtype='complex128')

Plan an fft over the last axis
fft_object_a = pyfftw.FFTW(a, b)

Over the first axis
fft_object_b = pyfftw.FFTW(a, b, axes=(0,))

Over the both axes
fft_object_c = pyfftw.FFTW(a, b, axes=(0,1))

For further information on all the supported transforms, including real transforms, as well as full documentaion on all
the instantiation arguments, see the pyfftw.FFTW documentation.

Wisdom

When creating a pyfftw.FFTW object, it is possible to instruct FFTW how much effort it should put into finding the
fastest possible method for computing the DFT. This is done by specifying a suitable planner flag in flags argument
to pyfftw.FFTW. Some of the planner flags can take a very long time to complete which can be problematic.

When the a particular transform has been created, distinguished by things like the data type, the shape, the stridings
and the flags, FFTW keeps a record of the fastest way to compute such a transform in future. This is referred to as
wisdom. When the program is completed, the wisdom that has been accumulated is forgotten.

It is possible to output the accumulated wisdom using the wisdom output routines. pyfftw.export_wisdom()
exports and returns the wisdom as a tuple of strings that can be easily written to file. To load the wisdom back in, use
the pyfftw.import_wisdom() function which takes as its argument that same tuple of strings that was returned
from pyfftw.export_wisdom().

If for some reason you wish to forget the accumulated wisdom, call pyfftw.forget_wisdom().

2.1.3 The pyfftw.builders functions

If you absolutely need the flexibility of dealing with pyfftw.FFTW directly, an easier option than constructing valid
arrays and so on is to use the convenient pyfftw.builders package. These functions take care of much of the
difficulty in specifying the exact size and dtype requirements to produce a valid scheme.

The pyfftw.builders functions are a series of helper functions that provide an interface very much like that
provided by numpy.fft, only instead of returning the result of the transform, a pyfftw.FFTW object (or in some
cases a wrapper around pyfftw.FFTW) is returned.

2.1. Overview and A Short Tutorial 7

http://www.fftw.org/fftw3_doc/Wisdom.html
http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft

pyFFTW Documentation, Release 0.10.2

import pyfftw

a = pyfftw.empty_aligned((128, 64), dtype='complex128')

Generate some data
ar, ai = numpy.random.randn(2, 128, 64)
a[:] = ar + 1j*ai

fft_object = pyfftw.builders.fft(a)

b = fft_object()

fft_object is an instance of pyfftw.FFTW, b is the result of the DFT.

Note that in this example, unlike creating a pyfftw.FFTW object using the direct interface, we can fill the array in
advance. This is because by default all the functions in pyfftw.builders keep a copy of the input array during
creation (though this can be disabled).

The pyfftw.builders functions construct an output array of the correct size and type. In the case of the regular
DFTs, this always creates an output array of the same size as the input array. In the case of the real transform, the
output array is the right shape to satisfy the scheme requirements.

The precision of the transform is determined by the dtype of the input array. If the input array is a floating point array,
then the precision of the floating point is used. If the input array is not a floating point array then a double precision
transform is used. Any calls made to the resultant object with an array of the same size will then be copied into the
internal array of the object, changing the dtype in the process.

Like numpy.fft, it is possible to specify a length (in the one-dimensional case) or a shape (in the multi-
dimensional case) that may be different to the array that is passed in. In such a case, a wrapper ob-
ject of type pyfftw.builders._utils._FFTWWrapper is returned. From an interface perspective,
this is identical to pyfftw.FFTW. The difference is in the way calls to the object are handled. With
pyfftw.builders._utils._FFTWWrapper objects, an array that is passed as an argument when calling the
object is copied into the internal array. This is done by a suitable slicing of the new passed-in array and the internal
array and is done precisely because the shape of the transform is different to the shape of the input array.

a = pyfftw.empty_aligned((128, 64), dtype='complex128')

fft_wrapper_object = pyfftw.builders.fftn(a, s=(32, 256))

b = fft_wrapper_object()

Inspecting these objects gives us their shapes:

>>> b.shape
(32, 256)
>>> fft_wrapper_object.input_array.shape
(32, 256)
>>> a.shape
(128, 64)

It is only possible to call fft_wrapper_object with an array that is the same shape as a. In this case, the first
axis of a is sliced to include only the first 32 elements, and the second axis of the internal array is sliced to include
only the last 64 elements. This way, shapes are made consistent for copying.

Understanding numpy.fft, these functions are largely self-explanatory. We point the reader to the API docs for
more information.

8 Chapter 2. Contents

http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft
http://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft

pyFFTW Documentation, Release 0.10.2

2.2 API Reference

2.2.1 pyfftw - The core

FFTW Class

Wisdom Functions

Functions for dealing with FFTW’s ability to export and restore plans, referred to as wisdom. For further information,
refer to the FFTW wisdom documentation.

Utility Functions

pyfftw.simd_alignment
An integer giving the optimum SIMD alignment in bytes, found by inspecting the CPU (e.g. if AVX is supported,
its value will be 32).

This can be used as n in the arguments for byte_align(), empty_aligned(), zeros_aligned(),
and ones_aligned() to create optimally aligned arrays for the running platform.

2.2.2 pyfftw.builders - Get FFTW objects using a numpy.fft like interface

2.2.3 pyfftw.builders._utils - Helper functions for pyfftw.builders

2.2.4 pyfftw.interfaces - Drop in replacements for other FFT implementations

numpy.fft interface

scipy.fftpack interface

Caching

2.2. API Reference 9

http://www.fftw.org/fftw3_doc/Words-of-Wisdom_002dSaving-Plans.html#Words-of-Wisdom_002dSaving-Plans

pyFFTW Documentation, Release 0.10.2

10 Chapter 2. Contents

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

11

pyFFTW Documentation, Release 0.10.2

12 Chapter 3. Indices and tables

Index

P
pyfftw.simd_alignment (built-in variable), 9

13

	Introduction
	Contents
	Overview and A Short Tutorial
	API Reference

	Indices and tables

